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DEVELOPMENTOF AN EFFICIENT NUMERICAL SCHEMEFOR THE

COMPUTATIONOF TURBULENTBOUNDARYLAYER FLOWS

OVER TWO-DIMENSIONALAND AXISYMMETRIC BODIES

by

Veer N. Vatsa I and G. Goglia 2

INTRODUCTION

In view of the Stanford Conference (ref. i) on turbulent

flows, there is no apparent shortage of numerical methods for

solving the equations governing the two-dimensional turbulent

boundary layer flows. However, most existing methods require a

large number of mesh points normal to the wall boundary in order

to achieve good accuracy. The situation is still more alarming

in three-dimensional flows where the computational effort is

increased by an order of magnitude due to the added dimension

and larger growth of boundary layer. Since the main objective is

to develop efficient codes for three-dimensional flows, it is

considered worthwhile to review the potential candidates from the

existing methods for two-dimensional flows and either develop or

select a scheme that is most efficient and suitable for future

three-dimensional problems.

The two most promising schemes in the literature at the

present time appear to be the Cebeci-Keller box scheme (ref. 2)

and the Blottner variable grid scheme (ref. 3). The Keller box

scheme has been shown to be very efficient for two-dimensional

flows (ref. 2); however, it results in block-tridiagonal matrices

and should require greater computational effort compared to simple

tridiagonal matrices, especially for three-dimensional problems.

Blottner has shown (ref. 3) that the variable grid scheme is equally

good or better in comparison to the box scheme for two-dimensional

flows, where he successfully employs large values of the geometric

progression constant governing the normal mesh point distribution.

i Research Associate, Old Dominion University, Norfolk, Virginia

23508.

2 Professor and Chairman, Department of Mechanical Engineering and

Mechanics, Old Dominion Universit[, Norfolk, Virginia 23508.



In view of the simplicity of the variable grid scheme, it

was considered ippropriate to conduct a study which would shed some

light on the use of large values of the geometric progression

constant and explain why the earlier attempts in this directionhad

failed. As a result of this study, a very efficient method has been

developed. The concepts developed herein will be used in the three-

dimensional research.

GOVERNING EQUATIONS

The governing equations used here are the classical boundary

layer equations and can be found abundantly in literature (e.g.,

ref. 4); however, the particular form and transformations used here

are similar to the ones presented by Van Driest (ref. 5) and used

by Harris (ref. 6). For completeness, these are given below.

Continuity

a • a

_-_ (r 3 Pu) + _ (r j pv) = 0 (i)

Momentum

Eu au au I dp 1 a Ir j _au_
(2)

Energy

p u _-_ (CpT) + v _ (CpT) = u + _

+ 1 a [rj _ a (CpT)]
r--_ a-_ _ (3)

The conventional overbar notation to represent the mean-flow

quantities has been dropped for the sake of simplicity. The eddy

viscosity parameters E and e are defined as follows:

= _ (I + E_ F) (4)



N

£ = N_ r 1 + _ Npr, t

(5)

A two-layer Cebeci-Smith (ref. 7) turbulence model, as described

by Harris (ref. 6) is employed to calculate the eddy viscosity.

For the inner layer,

i _ _ , (0 < y < Ym ) ,

and for the outer region,

I_ 1 - O K2 Ue 6" _ (Ym < Y)o - _ . inc '

(7)

where Ym is the value of y where the curves for inner and outer

eddy viscosity intersect each other. In the above expressions,

D = 1 - exp {- [ _ (i + K3)- K31 A_ } (8)

is the damping coefficient,

i u dy= 1 u
6*inc o e

(9)

is the incompressible displacement thickness, and

1 - erf [5 (_ - K4)].

Y = 2
(i0)

is the normal intermittency distribution coefficient.

The boundary layer thickness

normal to the wall boundary where

constants kz , k2 , k3 , and

is defined as the distance

u/u e = 0.995 . The empirical

k4 are set equal to .4 ,

.0168 , 0.0 and .78 respectively. Location of Ym is

determined from the continuity of eddy viscosity, so that

3



= at y = .
i o

(II)

The turbulent Prandtl number

is set equal to 0.95 .
Npr, t

is assumed constant and

Finally, there are two algebraic relations,

p = pRT (12)

and the viscosity law, chosen here to be Sutherland's viscosity

law,

Pr r T + S
(13)

where the reference temperature is

2
U

OO

T -
r R

and S = 198.60 R is the Sutherland's constant.

The above set of governing equations is transformed in terms

of the Levy-Lees variables to

dx (15)
J

(x) = Pe Pe Ue ro2
O

and

0eUero_/ tJ(0)dy _16,n (x, y) = _ o _e

where

t = r__ (17)
r
o

4



is the transverse curvature term.

as

Defining new dependent variables

_ u T (18)
F u ' 0 = _---

e e

and a transformed normal velocity as

• tj

2_ [ IBD) pVro3 ]
v = ro2J F _-_ + , (19)Pe Ue _e 2/_

the governing equations in the transformed variables then become

Continuity

3v + 2_ 3F (20)3--5 F=0 ,

Momentum

3F 3F

2_ F _ + v 3n 3 (t2J£_3F)

+ B (F2 - O) = 0 , and (21)

Energy

39 30

2_ F _ + v 3n

- a £ t2J _

3 (t2J £ ~ 30 )3n N e _-_
Pr

(22)

where

U 2
e

a = Cp T e ' 8 =

and OP

Pe _e

(23)

5



THe physicalnormal coordinate is related to the transformed

variable through the relation

/ 0ro [ (i + 2 cos (24)Y - cos _ - 1 -+ 2/_ _ d q
O u r 2j o

e e o

where the positive sign is taken for external flow and the negative

sign is used for internal flow.

The boundary conditions at the wall are

F (_, O) = 0

0 (_, 0)= @w (_) or <_) = <_I_, 0 w

v (_, 0) = v (_)
w

• (25)

and the outer edge conditions are

F (_, H e) = 1

0 (_, H e) = 1

(26)

Note that the transformed normal velocity in terms of physical

variables is

/_ 1 0w Vw> .
Vw = Pe ro2J Pe Ue ('27)

Transition. The starting location and extent of the transition

have to be supplied to the computer code. Such estimates are

generally semi-empirical in nature, based on correlations obtained

from existing data. With these two parameters fixed, the inter-

mittency distribution is calculated using the equation

F ([) = 1 - exp (- .412 [2) (28)



where

x - Xt,i
= . (29)

(x)r=3L -

The reader is referred to the original work of Harris (refs.

6, 8) for the details of the intermittency distribution and

turbulence model.

This completes the set of governing differential equations

for laminar, transitional and turbulent flow past two-dimensional

and axisymmetric bodies.

NUMERICAL ANALYSIS

Due to the steepness of the profiles near the wall, it is

not practical to use an equally spaced mesh for the calculation of

turbulent boundary layer flows. A practical solution to this problem

is to use a mesh which has short steps near the wall boundary, but

lengthens the step size away from the wall. A very effective way

of achieving this objective is to select the mesh in the normal

direction such that the successive mesh widths An i form a

geometric progression according to the relation

&H i = (k) i-I A_1 , (i = i, 2, . . . nmax) (30)

where k is the geometric progression constant.

Once the mesh distribution is defined, a choice must be made

between the various difference schemes. The computer code used for

the present study has an option of using either (a) the difference

relations obtained by using three terms of the Taylor series

expansion, so that the first truncated term is proportional to

the third derivative for both first and second derivative expressions,

or (b) the difference relations obtained by truncating the terms

proportional to AN i , which is equivalent to using two terms for

the first derivative and three terms for the second derivative from

the Taylor series expansion. The first approach will be referred

7



to as the conventional differencing approach since it has been used

by most authors in the field (refs. 6, 7, 9). The second approach

will be called Blottner's differencing approach after Blottner

(ref. 3). The resulting expressions along with the error terms

are as follows:

A. Conventional difference expressions

3u I Aqn-i Un+l (Aqn-i - Ann)

3-_-In - An n (Ann_ 1 + Ann)' - An n - Ann_ 1 Un

An n Un_ 1 Ann_ 1 An n 33u
- -- (31)

6 3n3Ann_ 1 (Ann_ 1 + An n )

and

82u 2Un+ 1 2Un- 1

3n2 - Aqn (An n + Ann_ 1) + Ann_ 1 (An n + Ann_ I)

2u
n (Ann - Ann_ 1 ) 33u

Ann_ 1 An n 3 3n3
(31)

The nonlinear term is written as

3 (_3u) 32u3-6 _ = _ 3n2
3£ 3u

-- +
3n 3n

(33)

so that the first truncated term

= - (Ann -12Ann-l) " [3 & 3n333u+ 6 3q232£m3n3U+
32u 3£ ]

6
3n23n ] n

• (34)

B. Blottner's difference expressions

and

3u _ Un+l - Un-i (Ann - Ann-l) 32u

3n (Aqn_l + Ann ) 2
(35)



_ (_u> 2Un+l_n _ = An n (An n + Ann_ 1 )

2u n

Ann_ 1 An n

+
2Un_ 1

Ann_ 1 (An n + Ann_ 1 )

(A_n - Ann_ 1 ) B3u

3 (36)

and the nonlinear term is written as

_-_ _ : An n + Ann_ 1

- £ i
n- 2

[£n+Z, (Un+Inn Un )

1 [ --33u + 3 32
12 L £ 3_3 _n2

_u
(37)

Replacing the derivatives with their difference approximations,

the governing equations can be written as follows:

Momentum

A1 n Fm+l,n_ 1 + B1 n Fm+l, n + C1 n Fm+l,n+ 1 + D1 n 0m+l,n_ 1

+ HI n 0m+l,n+ 1 = G1 n , (38)
+ E1

n 0m+ 1, n

and

Energy

A2 n Fm+l,n- 1 + B2 n Fm+l, n + C2 n Fm+l,n+ 1

+ E2n @m+l,n + F2n @m+l,n+l = G2n

+ D2 n 0m+l,n_ 1

. (39)

The coefficients A1 n , B1 n ,

known quantities at stations m

6f quantities at station m+l .

efficients are

• . , G2 n are functions of the

and m-i or of current values

The specific form of these co-



(t 2j _) m+l,n

A1 n = - (Vm+l,n)G " Y6n + _-_

• X3 n
_ (t 2j _)m+l,n

• Y6 n

(F_+I ,n)G . Xl -

BI n =

(t 2j i_) re+l, n

+ 2B (Fm+l,n) G

• Y4 n

C1 n = (Vm+ l,n )G

_ (t _-j Z_)m+l,n

m+l,n

• Y4 n
(t 2j £_) m+l,n

• Y2 n

D1 n = 0

El n = - Bin+I

HI n = 0

_ (Fm+l,n) G [(X2) Fm,n

GI n =
2

+ S (Fm+l,n) G "

Note that m is the running

the current station, and n

The governing equations

_ (X3) Fm-l,n ]

(40)

index in S-directi°n' m+l being the

is the running index in __direction-

are being solved at (m+l,n) point.



A2 n = 2 \_nJ m+]-,nG

B2 n = 2 \_)n} m+l,nG

• (c_ _ tz_ "E)m+l'n

. (. _ t 2_ -f)m+l,n

C2 n = - 2 m+l,nG

(_ Z t 2j _)m+l,n

• ¥6 n

D2 n = - (Vm+l,n)G " X6n + Y6n " %-_

-,13 "V'T-)

• ¥5 n

• Y4 n

• . ¥5 n
(Fro+l,n )G . XI - (Vm+l, n) G

_) (CE"e)m+l,n + _._} m+l,n

+ "_5n

a (C_) m+l,n

H2 n = (vm+l,n) G" Y4 n -Y4 n " _-q

qC£__ 1 " Y1 n_ . m+l,n

(Fm+l,n)G [(X2) 0m,n

G2 n = _

tot £ tzj _)m+l,n

• ¥2 n

_ (X3) 8m-l,n _

%nJ m+l ,n
G

(41)

whet e

2

yl n =



2Y2 =
n Ann A_n_1

Y3
n

-2

Ann_ 1 (An n + Ann_ 1)

Y4
n An n (A_ n + Ann_ 1 )

Y5
n

Ann_ I - An n

An n Ann_ 1

An n
Y6 =

n Ann_ i (An n + Ann_ 1 )

Xl = 2
ACI + 2A_2

ACt + A_2

X2 = 2

A_I + AC2

X3 = 2
A_I A_2

(42)

B. Blottner's Approach

Momentum

A1
n

(Vm+l, n )G

Ann_ 1 + An n

- [ (t2J _ _)m+l,n +2 (t2j _ _)m+l,n-i ] • Y3
n

12



(Fm+l,n)G . X1
BI n =

+ (t zj £ _)m+l,n._+l]
[(t _j £ _)m+l,n___ 2

+
L

+ 2_ (Fm+l,n} G

• Y1 n

• Y3 n

(Vm+ 1, n) G__

C1 n = _nn_l + An n

+ (t zj £ _)m+l,n__+l_

(t aj _ _)m+l,n_ 2

• Y1 n

D1 n = 0

El n = - B

HI n = 0

(Fm+l, n} G (X3) Fm_l,n ]

aln = [(x2) Fm,n -
2

- S (Fm+l,n)G "

(43)

Energy

A2 n = 2 (o_
Z tzj _}m+l,n

m+l,n / (_nn-I

G i

B2 n = 0

C2 n = - 2 (_
t 2j _)m+l,n m+l,n/(Ann-i

G

13



D2
n

_--. " w

(Vm+l, n )G

ADn_ 1 + An n

- 5 [(t _j _ _)
• _ m+l,n • £ _)m+l ] • Y3+ (t23 _ ,n-i n

E2
n

(Fm+l, n)

A_2 • Xl + .5 [(t23 _ m+l,n + (t 2j --£e) , 1 ]m+l n-

• Y1
n

+ 5 [(t 2j -£ _)
• q m+l ,n + (t 2j --__) n_l ] • Y3m+l, n

H2
n

(Vm+l, n ) G

Ann_ 1 + An n

- 5 [(t 2j £ ~
• _ e) m+l,n

+ (t 2j £--_) ] • Y1
o m+l, n+l n

G2
n

(Fm+ 1 ,n )

A_2 [(X2) 0m, n - (X3) 0m_l,n]

- (_ _ t2J _)m+l,n • m+l,n " (44)

G

These equations are solved using the coupled solution technique

of the type used by Harris (ref. 6) and described in detail by

Price and Harris (ref. i0). Once the momentum and energy equations

are solved, the continuity equation is integrated using the

trapezoidal rule of integration, and then the eddy viscosity is

updated. Due to the presence of nonlinearities in this set of

equations, iteration is required to update the nonlinear

coefficients. To study the effect of iteration, solutions were

obtained for a flat plate at M = 2.8 and varying the maximum

number of iterations allowed from 0 tO 15. The results thus

obtained with 25 points in the boundary layer are presented in

table 1 and clearly indicate that it is sufficient to iterate only

once to obtain accurate results• For this reason, all the

calculations presented in this report are made by iterating only

once. For more details of the numerical technique, the reader is

referred to the original paper by Price and Harris (ref. 10).

14



It should be noted that the starting solution is obtained here

by taking the self-similar form of the governing equations and

integrating these by standard tridiagonal procedures developed for

solving the parabolic equations (ref. ii), in contrast to the

Runge-Kutta procedure of reference 10.

VARIABLE GRID SCHEME

It has previously been indicated that a variable grid which

accomodates shorter steps near the wall boundary and longer steps

away from it is the practical way to compute turbulent boundary
layer flows. The most popular approach seems to be the use of a

mesh such that the successive step widths form a geometric

progression series (e.g., refs. 2, 3, 6 to i0). Thus, any two

consecutive step widths have a fixed ratio k , known as the

geometric progression constant. The value of k plays a signifi-

cant role on the numerical accuracy. Some of the typical values of

k and the number of points in the boundary layer employed by various

authors are given in table 2, which shows the range of (ref. 12-17)

k in use to be 1.02 to 1.12. Shang et al. (ref. 16) presented the

error in wall shear versus k , and their results indicate that by

using a value of k = 1.12 , instead of 1.02, the computation time

is reduced by a factor of 7.6. But for this large value of

k (k = 1.12) , there is an error of about seven percent in the

wall shear. To achieve an accuracy of one percent, the scheme of

reference 16 would require about 220 points and k z 1.04 .

Although such detailed error analysis is not available in the open

literature, it seems to be the basic reason for avoiding the use

of larger values of k . An exception to this conventional

approach is a recent study by Blottner (ref. 3), where he used

k = 1.82 and obtained satisfactory results with 10 to 20 points in

the boundary layer. It should be mentioned that the k used by

Blottner differs from the conventional definition of the geometric

progression constant, and an attempt is made here to relate the two.

In the geometric progression, the nth step size is as follows:

= k n-I
An n A_, (45)

15



where k is the conventional geometric progression constant.

Consequently, the q-coordinate at the nth point is

kn-I - 1 7[
_n = qmax [ n -[ J

k max - 1

(46)

Blottner interprets the variable grid as a coordinate trans-

formation (ref. 3) where the nonuniformly varying q-coordinate

(0 to qmax ) is transformed point by point to a uniformly varying

N-coordinate (0 to i), the mapping being given by the relation

of the type

q n = q (N n) (n = i, 2, . . . , nma x) , (47)

where

N = (n- i) AN
n

and

Nma x = 1 ; (48)

therefore,

kNn/AN _

"n = qmax [kI--IV_AN "_ i I ]
(49)

It should be noted that this is not a very suitable definition

of k for conducting a step size study. To clarify this point,

consider a uniformly spaced grid. In a step size study, if the

number of grid points are doubled, the denser mesh puts one point

exactly in the middle of any two consecutive points of the coarser

mesh in addition to the points that coincide with the original coarse

mesh. Consequently, there is a linear relationship between the

number of mesh points and the step size. Although an exact linear

16



relationship between the step size and the number of grid points

is not possible in a variable grid, we can approximate such a

condition near the wall boundary by imposing the following limiting

condition:

k ÷ 1 as 6N÷ 0 . (50)

This can be satisfied if a modified geometric pzogression

constant k is defined as

ANo/AN
= (k) (51)

where AN ° is the step width in the uniformly varying coordinate-

N, corresponding to N o , the reference value chosen for number of

grid points.

Thus, equation (49) takes the form

qn = qmax I (_)

Nn/AN 0

-1]
I/AN ° , (521

(_) - 1

which is given as the starting relation for geometric progressions

by Blottner (ref. 3).

With the modified definition of k , a uniform spacing and,

hence, a linear relationship between step size and the number of

grid points is obtained in the y-coordinate for infinitely many

points.

As a specific case, let nma x = 77.7 and _ = 1.5 for

N o = 25 . The step size Aql at the wall, obtained by using

equation (52), is plotted versus the number of intervals on a log-

log scale (fig. i) and clearly indicates a linear trend for

N > 60 . The corresponding values of physical k are plotted as

a function of the number of intervals in figure 2 for the sake of

completeness. If a similar study was conducted with the conventional

, the slope of the curve in figure 1 would be much steeper.

17



It should be noted that such a modified definition of the

geometric progression constant is fundamental to any step size

study for a variable grid; otherwise, one gets into a situation

similar to the one encountered by Shang et al. (ref. 16). In

reference 16, the value of A_l was fixed, and k was varied

between 1.02 and 1.12. The results thus obtained showed a

seven percent error in wall shear for k = 1.12 and N = 86 ,

thereby eliminating the use of higher values of k . In contrast,

it will be shown that with the variable grid scheme discussed

here, reasonably accurate solutions are obtained with k = 1.5

and N = 25 .

RESULTS AND DISCUSSION

The results of this study can be divided into two categories:

the first part being concerned with the study and development of an

efficient numerical procedure to minimize the required number of

grid points normal to the wall boundary and the second part being

concerned with the application of the selected scheme to various

boundary layer flows.

Before presenting any specific solutions, it is instructive

to examine the truncation errors of the prospective schemes.

Two basic approaches are being considered: the conventional

approach and Blottner's (ref. 3) approach. As was pointed out

in the section on numerical analysis, the truncation errors are:

A. Blottner's Approach

error in first derivative = -
(A_n - Ann_ I ) B2 u

2 _n---_ ' (53)

error in second derivative = -
(A_n - ADn_ I) B3 u

2  n--7, (54)

18



and error in the nonlinear term _ £

(An n - Ann_ l)

12
. (55)

n

Note that all the truncation errors are proportional to

(An n - Ann_l) where

(An n - Ann_ 1 ) = (k - I) Ann_ 1 = (nn+ 1 - 2n n + nn_ l) . (56)

Consequently, Blottner's variable grid scheme is only first order

accurate in the normal step size An and will become second order

accurate in An , provided

k ~ 1 + 0 (An) . (57)

Thus, unless k is a slowly varying function satisfying

equation (57), the variable grid scheme is formally first order

accurate.

However, the situation is entirely different if the variable

grid scheme is interpreted in terms of a coordinate transformation

of the type

n n = n (N n) (n = i, 2, . . . , nma x) . (58)

Here, £he nonuniform spacing otO_ma x is mapped point by point

into a uniform spacing, 0 to i, in the N-coordinate, so that

Nn+l - 2Nn + Nn-i = AN2 (_--_2Nn) n " (59)

Therefore, all the error terms are now proportional to AN 2 ,

and the scheme is formally second order accurate in the transformed

N-plane or simply in terms of number of intervals in the normal

direction.
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This observatibn is confirmed by the variation of percentage

error in wall shear plotted as a function of the number of intervals

in the n-direction (fig. 3). From this figure, it is clear that

except for the initial region, the curve is a straight line with

a slope of 1/2 on a log-log scale. It means that the error is

reduced by 1/4 each time the number of intervals is doubled, which
is the true indicator of a second order accurate scheme.

B. Conventional Approach (Scheme i)

error in first derivative =

k Aq__ 1 _3 u

6 8q3

(Aqn_l • Aq n) _3U

6 8q3

; (60)

error in second derivative = -
(Aqn - Aqn-l) 83u

3

(k - i) Aq 83u
3 n-i _ ; (61)

3
error in nonlinear term _-

oq Z 8_)= (k- i) Ann_ 112

•[3 i 83u - _ 2 _,, _U _2U _£ ]+ 6 • --+ 6 • (62)
8n3 8q2 8n 8n2 '_ "

Thus the first derivative is second order accurate in An ,

whereas the second derivative and the nonlinear terms are only'first

order accurate in Aq • This makes the difference equations

slightly inconsistent and results in much higher error in the

solution when compared to Blottner's approach on a one-to-one

basis.

However, in terms of the N-coordinate, all the truncation

errors are proportional to AN 2 , and again this is confirmed by

plotting percentage error in the solution versus the number of

intervals. The curve is a straight line of slope 1/2 on a log-log

scale (fig. 3), as was the case for Blottner's approach. However,
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note the level of error in the two cases, e.g., with 32 points

Blottner's scheme gives an error of 2.5 percent compared to a

27 percent error in the conventional scheme. Another interesting

observation is that the conventional approach would not converge

with 25 points, whereas with the Blottner's scheme we get an error

of about 4 percent in the wall shear with 25 points.

It should be mentioned here that these error estimates are

based on the exact numerical solution as the reference, the

exact numerical solution being obtained by Richardson's extrapolation

applied to the two most accurate numerical solutions computed here.

The test problem for all the results in this section, unless

mentioned otherwise, is a flat plate at M = 2.8 , the test
conditions being identical to the experimental study of Moore and

Harkness (ref. 18).

C. Conventional Approach (Scheme 2)

Another series of runs was madeto test the effect of

inconsistency in the first derivative in the conventional approach,

and it is designated here as scheme 2 of the conventional approach.

This scheme is the same as the conventional approach (scheme

i) with the exception that the first derivative expressions are

replaced with

_u Un+l - Un-1

3q Aqn_ 1 + Aq n
(63)

Consequently, the truncation errors in all the terms are pro-

portional to (k - i) Aql where

(k- l)Aq, = AN 2 (_--_>_N z
(64)

The results obtained with this scheme are also plotted on

figure 3. Undoubtedly, the scheme is second order accurate in the

number of intervals, and results thus obtained are much closer to
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the Blottner's scheme. The conventional approach conveys the

important idea that all the difference expressions should always
be of the same accuracy for the sake of consistency. However,

there is still a noticeable difference in the results in comparison

to Blottner's scheme, and this is attributed to the different

treatment of nonlinear terms of type _ \ _/ . Although the
truncation errors are formally of the same order, the coefficients
in the error terms are not the same, which result in the type of

differences seen in figure 3.

D. Effect of Turbulence Modeling

A final test case in this study on truncation errors was

aimed at assessing the influence of the turbulence model on the

accuracy of the solution. The turbulence model used here has an

explicit dependence on the boundary layer thickness, which is not

a well-defined quantity, especially when the calculations are made

with 20 to 30 mesh points; because, in such cases, we do not have

a sufficient number of points in the outer part of the boundary

layer to achieve an exponential decay of the profiles. Following

the lead of Mellor and Herring (ref. 19), the outer eddy viscosity

was assumed constant. The results obtained with this model are

plotted in figure 4, along with the results of using the conventional

two-layer eddy viscosity model (refs. 7 to I0). The numerical

scheme used in both cases is Blottner's scheme. It is clear from

figure 4 that the solution is significantly more accurate (using

the same number of mesh points), with this model as opposed to the

conventionaleddy viscosity model where the outer viscosity goes

to zero at the edge of the boundary layer. This opens up the

possibilities of employing a more suitable turbulence model which

does not depend on the boundary layer thickness explicitly and at

the same time is physically acceptable.

Having established the overall numerical accuracy of Blottner's

variable grid scheme, as employed here, a few comparisons are made

with experimental data and other numerical solutions to test the

present scheme.
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(!) Turbulent Flat Plate

A high Reynolds number flow is chosen here, with test

conditions identical to the experimental study of Moore and

Harkness (ref. 18) which are as follows:

M =2.8,
CO

Pt,_ = 0.997 MN/m

Tt,_ = 311.1Ok. ,

and

TJTt,_ = 0.95 .

Since transition location was not reported in reference 18, the

only comparisons shown here are for the fully turbulent flow.

The numerical results presented in figure 5 compare well with the

experimental data, and were obtained with n = 41 and
max

k = 1.275 .

(2) Laminar, Transitional, and Turbulent Flow on Sharp Cone

The case under consideration is a i0 ° sharp cone for which

experimental data was obtained by Stainbeck (ref. 20) at the NASA

Langley Research Center. The test conditions are as follows:

M = 8 ,
OO

Pt,_ = 17.38 MN/m z ,

Tt, _ = 759.4 ° k ,

and

Tw/T t,_ = 0.42 .
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The location and extent of transition were taken from the

experimental data, and the resulting solutions are shown in

figure 6. Present results compare reasonably well with the
experimental data except near the end of the transition where

the present calculations fail to reach the measured overshoot in

the heating rate. The discrepancy arises largely because of the

choice of the recovery factor in the transition region. After

the transition, present results compare well with the turbulent
data. It should be noted that these numerical results were

performed with 41 points in the boundary layer.

(3) Laminar Flow with Mass Injection

Marvin and Akin (ref. 21) obtained data over a range of

injection rates for a sharply tipped 5 ° cone. The cone was solid

for X < 9.53 cm, and the remainder of the cone was porous. The

test conditions are as follows:

and

=74,Moo

= 4 137 MN/m 2Pt _ "

T t,_ = 833.3 ° k I

/T t = 0.38 .T w ,

The air injection parameter

(pv) w

F = (PU_e ,

, defined as

(65)

ranged from a minimum of zero (no injection) to a maximum value

of 1.3903 × 10 -3 .

The heating rate normal_zed by the heating rate at the

wall at x = 9.53 cm is presented in figure 7A along with the
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experimental data of Marvin and Akin (ref. 21) for 4 different

values of F . It should be noted that mass distribution was

not uniform in the experimental study (see ref. 6), whereas the

computations reported here were carried with an average value of

mass injection. Considering the uncertainties in the experimental

r mass distribution, the results obtained here compare well with

the experimental data over the large range of mass injection.

The velocity profiles at X/L = 1.574 are also shown for these

cases in figure 7B, and it is apparent that for F = 1.3903 × 10 -3 ,

i.e., for the maximum mass injection base, the flow is approaching

separation.

(4) Laminar Blunt Body Flow

The case chosen here is a hemispherical nose, the test

conditions being:

and

M =10.4 ,
CO

Pt,_ = 10.77 MN/m 2 ,

Tt, _ = 1222 ° k ,

/ = 0.25 .Tw Tt,_

Numerical solutions for this case have been obtained by

Marvin and Sheaffer (ref. 22). The heating rate and shear stress

at the wall, normlized with their respective maximum values, are

presented in figures 8A and 8B along with the results of reference

22. The modified Newtonian inviscid pressure distribution was

used in the present calculations. Since Marvin and Sheaffer (ref.

22) have not given the details of the inviscid pressure used,

results are presented only up to the point where the pressure

gradient is favorable. Comparison between the two approaches is
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excellent keeping in view the fact that the source of the inviscid

pressure may not be the same in both approaches. The present

calculations were made with 31 points in the boundary layer.

CONCLUSIONSAND RECOMMENDATIONS

An extremely efficient numerical scheme has been identified.

The scheme utilizes highly nonuniform mesh width distribution in

the boundary layer and achieves reasonably accurate solutions for

turbulent boundary layers with 25 to 30 nodes. The scheme is

shown to give good results for a variety of problems.

Further research will be directed in utilizing this approach.

for the more challenging, three-dimensional turbulent boundary

layer calculations.
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Table i. Effect of iteration

CF × 102
e

No. of

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

i0.0

.13753

.12187

.11443

.11133

.10874

.10581

.10329

.10167

.10066

.09976

1

.13736

.12416

.11635

.11288

.10936

.10614

.10374

.10234

.10i28

.10024

of wail shear.

2

.13752

.12441

.11661

.11306

.10948

.10623

.10383

.10242

.10136

.10030

15

.13765

.12450

.11668

.11310

.10951

.10626

.10385

.10244

.10137

.10031
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Table 2. Geometric progression constant employed by various
investigators.

.Reference No. of
Author(s) Number k Intervals

Smith and Cebeci

Anderson and Lewis

Verma

Adams

Dwyer et al.

Shang et al.

Bushnell and Beckwith

7

12

13

14

15

16

17

1.02

1.09

1.07

1.063

1.021

1.04-1.12

1.02

157

100

i00

85

350

294-112

230
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Figure I. Effect of No. of intervals on step size at the
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